(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(x, +(y, z)) → +(+(x, y), z)
f(g(f(x))) → f(h(s(0), x))
f(g(h(x, y))) → f(h(s(x), y))
f(h(x, h(y, z))) → f(h(+(x, y), z))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
+'(x, +'(y, z)) → +'(+'(x, y), z)
f(g(f(x))) → f(h(s(0'), x))
f(g(h(x, y))) → f(h(s(x), y))
f(h(x, h(y, z))) → f(h(+'(x, y), z))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
+'(x, +'(y, z)) → +'(+'(x, y), z)
f(g(f(x))) → f(h(s(0'), x))
f(g(h(x, y))) → f(h(s(x), y))
f(h(x, h(y, z))) → f(h(+'(x, y), z))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: g:h → g:h
g :: g:h → g:h
h :: 0':s → g:h → g:h
hole_0':s1_0 :: 0':s
hole_g:h2_0 :: g:h
gen_0':s3_0 :: Nat → 0':s
gen_g:h4_0 :: Nat → g:h
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
fThey will be analysed ascendingly in the following order:
+' < f
(6) Obligation:
TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
+'(
x,
+'(
y,
z)) →
+'(
+'(
x,
y),
z)
f(
g(
f(
x))) →
f(
h(
s(
0'),
x))
f(
g(
h(
x,
y))) →
f(
h(
s(
x),
y))
f(
h(
x,
h(
y,
z))) →
f(
h(
+'(
x,
y),
z))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: g:h → g:h
g :: g:h → g:h
h :: 0':s → g:h → g:h
hole_0':s1_0 :: 0':s
hole_g:h2_0 :: g:h
gen_0':s3_0 :: Nat → 0':s
gen_g:h4_0 :: Nat → g:h
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_g:h4_0(0) ⇔ hole_g:h2_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
The following defined symbols remain to be analysed:
+', f
They will be analysed ascendingly in the following order:
+' < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
a),
gen_0':s3_0(
n6_0)) →
gen_0':s3_0(
+(
n6_0,
a)), rt ∈ Ω(1 + n6
0)
Induction Base:
+'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)
Induction Step:
+'(gen_0':s3_0(a), gen_0':s3_0(+(n6_0, 1))) →RΩ(1)
s(+'(gen_0':s3_0(a), gen_0':s3_0(n6_0))) →IH
s(gen_0':s3_0(+(a, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
+'(
x,
+'(
y,
z)) →
+'(
+'(
x,
y),
z)
f(
g(
f(
x))) →
f(
h(
s(
0'),
x))
f(
g(
h(
x,
y))) →
f(
h(
s(
x),
y))
f(
h(
x,
h(
y,
z))) →
f(
h(
+'(
x,
y),
z))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: g:h → g:h
g :: g:h → g:h
h :: 0':s → g:h → g:h
hole_0':s1_0 :: 0':s
hole_g:h2_0 :: g:h
gen_0':s3_0 :: Nat → 0':s
gen_g:h4_0 :: Nat → g:h
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n6_0)) → gen_0':s3_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_g:h4_0(0) ⇔ hole_g:h2_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
The following defined symbols remain to be analysed:
f
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(11) Obligation:
TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
+'(
x,
+'(
y,
z)) →
+'(
+'(
x,
y),
z)
f(
g(
f(
x))) →
f(
h(
s(
0'),
x))
f(
g(
h(
x,
y))) →
f(
h(
s(
x),
y))
f(
h(
x,
h(
y,
z))) →
f(
h(
+'(
x,
y),
z))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: g:h → g:h
g :: g:h → g:h
h :: 0':s → g:h → g:h
hole_0':s1_0 :: 0':s
hole_g:h2_0 :: g:h
gen_0':s3_0 :: Nat → 0':s
gen_g:h4_0 :: Nat → g:h
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n6_0)) → gen_0':s3_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_g:h4_0(0) ⇔ hole_g:h2_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(a), gen_0':s3_0(n6_0)) → gen_0':s3_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
+'(
x,
+'(
y,
z)) →
+'(
+'(
x,
y),
z)
f(
g(
f(
x))) →
f(
h(
s(
0'),
x))
f(
g(
h(
x,
y))) →
f(
h(
s(
x),
y))
f(
h(
x,
h(
y,
z))) →
f(
h(
+'(
x,
y),
z))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: g:h → g:h
g :: g:h → g:h
h :: 0':s → g:h → g:h
hole_0':s1_0 :: 0':s
hole_g:h2_0 :: g:h
gen_0':s3_0 :: Nat → 0':s
gen_g:h4_0 :: Nat → g:h
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n6_0)) → gen_0':s3_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_g:h4_0(0) ⇔ hole_g:h2_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(a), gen_0':s3_0(n6_0)) → gen_0':s3_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)